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Responses to topographical forcing 
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Thc influence of small topographic features on the dynamic responses of an inviscid, 
stratified, f-plane ocean to  a time-dependent upstream flow is studied. Based on the 
quasi-geostrophic vorticity equation we analyse a quasi-nonlinear approach, in 
which the horizontal currents in the advection terms are replaced by the upstream 
flow. It appears that  the quasi-nonlinear theory is susceptible to analytical 
treatment and contains the essential dynamics to give a sufficient description of the 
response scenario. As examples, infinitely long ridges and a right-circular cylinder are 
considered. In the case of an infinitely long top-hat ridge closed-form expressions can 
be derived. In  the case of a cylindrical obstable the theory gives explicit indications 
of which term corresponds to which of the processes involved, such as topographic 
waves, which are generated in the starting phase and move clockwise round the 
obstacle, vortex shedding, and formation of a vortex over the cylinder in the final 
steady state. 

1. Introduction 
This paper re-examines the effects of small topographic features on the dynamics 

of a stratified, rotating fluid on an f-plane. In  particular, the oceanic response to a 
current U, flowing over a topographic obstable is analysed in the framework of the 
quasi-gcostrophic theory, i .e. high-frequency processes such as inertial waves are 
filtered out. 

There are various studies of this type of problem, with and without stratification, 
assuming f-plane or /3-plane dynamics, e.g. Hogg (1973), Huppert (1975), McCartney 
(197Fi), Huppert & Bryan (1976), Johnson (1984), Willmott (1984), Verron (1986), 
Gill et al. (1986), Verron, Provost & Holland (1987), Killworth (1989), and references 
therein. 

Most of those papers are based on numerical experiments whereas analytical 
solutions are known only for some special cases, such as the linear approximation 
(Johnson 1984) and the nonlinear steady state (Hogg 1973; Huppert 1975). 
Moreovcr, Huppert & Bryan (1976), H & B hereafter, used a very simplified 
analytical model to discuss qualitatively some aspects of the results of their 
numerical simulations. To our knowledge analytical approximations covering the 
wholc responsc scenario, i.e. the generation of topographic waves, vortex shedding 
and, finally, the formation of Taylor columns have not been reported in the 
literature. 

It is the aim of the prcsent paper to  attack this problem. Our analytical 
investigations are focused on a quasi-nonlinear approach, where a Green’s-function 
technique can be used to study the response scenarios a t  topographic features. As 
examples we consider infinitely long ridges and a cylindrical obstable. 

The case where the upstream current flows over an infinitely long ridge, 
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perpendicular to its axis is relatively simple but has the virtue that in the case of a 
flat-topped ridge closed-form expressions of the topographically induced response 
can be obtained. Such solutions may serve as a kind of rcference case in the analysis 
of more complex situations. 

If a current, suddenly switched on and being constant thereafter, flows over a 
cylindrical obstacle two processes, topographic waves and vortex shedding, 
determine the response scenario. Initially a topographic wave is excited, moving 
clockwise round the obstacle. Later, owing to advective processes, a cylclonic vortex 
is shed, while an anticyclonic vortex remains over the obstacle. The advection time 
emerges as an important timescale which is defined by 5’; = L/U,,, where U,, is the 
upstream velocity and L is the lateral scale of the obstacle. For small times, t 6 T,, 
topographic waves dominate the response, while for t z T, the vortex shedding 
becomes important. For times much larger than the advection time, t % T,, a steady 
state is established where the streamlines of the topographically induced currents are 
parallel to f / H  contours. An excellent description of this scenario was provided by 
the numerical simulations in H & B. 

The paper is organized as follows; in $2 we briefly summarize the basic equations, 
and in 53 a source representation for the topographically induced pressure is derived 
for the linear, the quasi-nonlinear and the nonlinear stationary approximation. 
Section 4 describes the dynamic effects of an infinite ridge and $55 and 6 are devoted 
to the response produced by a right-circular topographic feature, 

2. Basic equations 
Ignoring high-frequency processes, such as inertial waves, we can describe the 

response of currents to small topographic features in terms of the quasi-geostrophic 
vorticity equation 

The potential vorticity g is related to the pressure p by the potential equation 

DtY=O. (2.1) 

Y =  ( 2 + V 2 ) p ,  (2.2) 

where 

f is the inertial frequency and N the Brunt-Vaisala frequency. The symbol D, stands 
for 

Using the geostrophic 

(2.3) can be rewritten 

a 
- at 

D - - + u * V  

equations 
1 1 u = -- fp”, v=-pz f 

a 1  

at f 

as 
D, = -+-J(p, . . .) 

where J ( a ,  6 )  = a,b,-a, 6 ,  is the Jacobian. 
At the surface we use the boundary condition 

D, p,+-p = O  for z = O .  ( 3 

(2.3) 

(2.4) 

(2 .5 )  

( 2 . 6 ~ )  
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The bottom boundary condition is that there is no flow normal to the bottom 
boundary, z = - H ( r ) ,  i.e. 

( 2 . 6 b )  
N2 

f 
D,p ,  = -J@, H )  for z = - H ( r ) .  

The bold r denotes the horizontal radius vector r = (x, y)  with 

T = Irl = ( 2 2  + ~ 2 ) : .  

We consider an ocean of constant depth H,, which is disturbed by topographic 
features such as seamounts, valleys or ridges described by a profile function h(r) .  
Then, the total depth is given by 

H ( r )  = H , - h ( r ) .  (2.7) 

If a large-scale upstream current u, flows over the feature a topographically induced 
response will be generated. Thus, the pressure p consists of two parts, an upstream 
contribution p ,  due to  the flow u, and the topographically forced response $, 

P = PO+$. (2.8) 

In particular, for a homogeneous upstream flow in the x-direction p ,  is 

Po = --fu,(t) 9. 

Far upstream we require $r to vanish 

$ + O  for x+--Go. (2.9) 

In  the following the analysis is confined to small topographic heights, i.e. h/H 6 
1. This implies that the solution of the set (2.6) can be obtained by means of a 
perturbation theory. For a geostrophic upstream pressure our basic equations reduce 
to  

D t ( Z  + V2) $ = 0, 

D,($,+-$) = 0 for z = 0, 
N2 

9 

(2.10) 

(2.11a) 

(2.11b) 
N2 

D t e Z  = - - -J($,h)-N2u, .Vh for z = - H ( r ) .  
f 

Since h is independent of time (2.11b) can be rewritten as 

Dt($,+N2h) = 0 for z = - H ( r ) .  (2.12) 

Equation (2.1) states that  the vorticity g is conserved along streamlines and since it 
vanishes far upstream, it remains zero everywherc, 

( Z + V 2 ) $  = 0. 

Thus, the evolution of $r with time is determined only by the boundary conditions 
(2.11). 

3. Formal solution of the quasi-geostrophic equation 
The quasi-geostrophic equation (2.10) together with the boundary conditions 

(2.11) form a nonlinear set which can only be solved numerically. However, in some 
cases which correspond to certain stages of the evolution of the response function $ 
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an analytical treatment is possible. We use a Green's-function method which is 
outlined in this section. This method can be considered as a generalization of that 
used in H & B. In particular we examine the linear, nonlinear stationary and the 
quasi-nonlinear approximations. The corresponding Green's functions are evaluated 
explicitly in Appendix A. 

3.1. The linear approximation 

Let the upstream flow be switched on suddenly at  t = 0. As long as the time t is small 
compared to  the advection time T, we can expect a linear response, i.e. for t 4 T, we 
replace D, by a/a t  and find from (2.10), (2.11a, 6) 

a 
- at (V2 + a )  $."(r, 2 ,  t )  = 0, (3.1) 

and ( 3 . 2 ~ )  

The superscript I, indicates the linear approximation of II., 
We introduce a Green's-function L which 

a 
at' 

--(a'+V2')L(r,z, t ,r ' ,z ' , t ' )  

The primed operators denote differentiation 
L. We require the boundary conditions 

a 
-Lz, = 0 
at! 

I,+0 

and L=O 

corresponds to  $." and is defined by 

(3.3) = S(r - r') S(z - 2 ' )  S ( t  - t').  

with respect to the primed variables of 

for z' = 0. 

for z ' = - H ,  

for r' + co 

for t < t ' .  

(3.4~) 

(3 .4b )  

( 3 . 5 ~ )  

(3.5b) 

The calculation of the Green's function is given in Appendix A. Once the Green's 
function is known a source representation can be derived in the usual manner to 
obtain 

1 
$."( r ,  z ,  t )  = - f 

b r '  
dt'L(r, z ,  t ; r', - H ,  t')  J($'(r', - H ,  t ' ) ,  h) )  . 

(3.6) 

This linear integro-differential equation reveals that the flow perpendicular to the 
contour lines of the topographic feature is the source of the induced pressure response 
$". Since friction is ignored no stationary state for $." exists and we anticipate that 
the initial phase of the response to a flow uo governed by (3.6) is dominated by 
topographic waves. 

In order to  investigate qualitatively the effect of dissipation one can formally 
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include Rayleigh friction and Newton cooling by replacing a/a t  by a p t  + v ,  where for 
simplicity the same friction constant v is used for both processes. In  this manner the 
form of (3 .6)  is retained, but the Green’s function L will be multiplied by an 
additional factor e-v(t-t‘). 

3.2. The nonlinear stationary state 

I n  the opposite case of large times, i.e. t 9 T,, the response is in a steady state. 
Replacing D, in (2.10), (2 .11a) ,  and (2.12) by (l/f) J ( p ,  ...) we obtain the equation 

J@,O = 0 (3.7) 

and the boundary conditions 

= O  for z = O  ( 3 . 8 ~ )  

and = O  for z = - H .  (3 .8b)  

From general properties of the Jacobian together with the upstream condition (2.9) 
this set can be integrated along streamlines and reduces to  

( d + V 2 ) $ S  = 0 (3 .9)  

with the boundary conditions 

2h for z = - H .  (3 .10a ,b)  $:=--$s for z = O ,  $ : = - N  
N2 

9 

The solution of the boundary-value problem (3 .9)  and (3.10a, b )  can be expressed 
also by means of a source representation 

$‘(r,z)  = - f2  dr’h(r’)S(r,~;r’ ,  - H ) ,  (3.11) I 
where S is the associated Green’s function defined as 

(a’ + V2’) S(r ,  2, t’, 2’) = 6(r-  r’) S(z- z’), (3.12) 

with the boundary conditions 
N2 

9 
S,.+-S = 0 for z‘ = 0, (3.13) 

S,.=O for z ’=-H.  (3.14) 

This solution expresses the fact that in the stationary case the streamlines of the 
topographically induced current are parallel to  f / H  contours. Moreover, $s turns out 
to be independent of the upstream flow u,. Thus, (3.1 1 )  describes the stationary final 
state of the topographically induced pressure for an arbitrary background flow, 
seemingly independent of history and spatial structure of u,. 

Inserting the examples of h(r) used in Hogg (1973) and Huppert (1975) equation 
(3.11) would give their results. 

3.3. The quasi-nonlinear approximation 

For times of the order of T, the linear approximation is no longer applicable and the 
advective terms in (2.10) and ( 2 . 1 1  a ,  b )  must be taken into account. This is indicated 
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by the fact that  for large times the linear approximation (3.6) does not converge to 
the stationary state (3.11). It is one purpose of this paper to show that a quasi- 
nonlinear approach connects the linear approximation and the nonlinear stationary 
state, i.e. it contains both of them as limit cases. This implies that a quasi-nonlinear 
approximation gives a good description of the whole response scenario. 

In thc quasi-nonlinear approximation the operator D, has to be replaced by 

a 
at 

Dt z gt = - + u , . V ,  (3.15) 

i.e. only the upstrcam flow is retained in the advectivc terms. The quasi-nonlincar 
system has the virtue that, as in the linear case, the solutions can be expressed in 
terms of a Green’s function. With (3.15) we rewrite the quasi-geostrophic equation 

(3.16) 
(2.10) as 

The associated Grcen’s function is governed by 

9t(v2+%o)+(r ,Z. t )  = 0. 

(V” + 3’) q, G ( r ,  2 ,  t ; r‘. z’, t’) = 8 ( r - r / )  6 ( % - Z ’ )  8(t -t’), (3.17) 

where q is the adjoint operator of 5Bt 
- a  9 - - - - v . u  

at 0 ’  t -  (3.18) 

The definition of the Green’s function G‘ by means of (3.17) appears to be convenient 
to derive a source representation for + also for the more general case where u, also 
depends on r or z .  

We multiply (3.16) by G, (3.17) by +, add the resulting equations and integrate to 
obtain 

+ ( r , ~ , t )  = j d r ’ r  - H  d z ’ S _ : d t ’ [ C ( ~ V z ’ + Z ~ ) ~ , G ) - G ( ~ , ( V z ’ + 3 ’ ) )  +I. 

The opcrator 9t in the second term can be integrated by parts where + = 0 for t’ + 
- co , G = 0 for t‘ + 00, and G + 0 for r‘ + co wcre required. It can easily be seen that 
the terms with the horizontal Laplacian V2‘ give no contribution, i.e. only the terms 
associated with Zf remain. After integration by parts with respect to z’ these terms 
can be written as 

We choose the boundary conditions for the Green’s function G as 

(&+:)%,<: = 0 for z’ = 0, (3.19a) 

a -  
aZf -gt,G = O  for z ‘=-H.  (3.19b) 

Then it appears that  only the bottom boundary condition at z = - H yields a non- 
vanishing contribution and we arrive at the following integro-differential equation 

dt‘G(r,z,t;r’, - -H,t ‘ )  , (3.20) 
for 1G.: 

where (2.11 b )  with D, replaced by gt has been used. 
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3.4. Discussion and implications of the integral equation 
Equation (3.20) together with the definition of the Green’s function is a rather 
general expression for $. In particular, it is difficult to  evaluate the Green’s function 
Q explicitly for an arbitrary background flow u,. Nevertheless (3.20) permits some 
insight in the evolution of the response pattern. 

Formally, (3.20) is equivalent to the linear approximation (3.6); however, it differs 
in thc Green’s function. Obviously, (3.20) reduces to the linear integro-differential 
equat,ion (3.6) if the quasi-nonlinear terms in the Green’s functions are dropped, i.c. 

G ( r , z ,  t,r’,z’,t’) = L ( r , z , t ,  r’, z’, t’) for u,,+O. (3.21) 

Moreover the stationary state as given by (3.11) can also be derived from (3.20). 
I n  order to show this we have to  investigate the properties of the Green’s function 
in more detail. Writing the causality condition explicitly by means of a step function 

G(t,t’) = B(t-t’)K(t,t’) 

i t  follows that 
3, G( t ,  t ’ )  = S( t - t ’ )  K( t ,  t’) - G(t - t ’ )  gt’t. K( t ,  t’). (3.22) 

From (3.22) together with (3.17) wc find 

( a ’ + v 2 ’ ) q r K ( t , t ’ )  = 0. 

I n  particular we can require 

3 ? K ( t ,  t’) = 0. (3.23) 

Moreover, from (3.22) and (3.17) it follows that the Green’s function K with equal 
time arguments, i.e. K ( t ,  t )  = X ,  is independent of time and governed by the reduced 
differential equation 

(2 ’ + V2’) X(r ,  2, r’, 2’) = S(r - r’) S(z - z’) (3.24) 

with the boundary conditions 

(3.25 a )  

(3.25b) 

Comparing (3.24) and (3.25a, b) with the definition of the Green’s function S for the 
nonlinear steady state (3.12) we find that 

X(r, z, r’, z’) = X ( r ,  z, r‘, z’) ,  (3.26) 

i.e. the nonlinear stationary Green’s function S appears as a special case of the quasi- 
nonlinear Green’s function K .  Now we can separate the stationary contribution to 
the response function @ given by (3.20). Integrating the first term of (3.20) by parts 
and then using the relation (3.23) to perform the time integration we arrive a t  

a 
az’ 
-X=O for z’=-H.  

dr’(h’(r, z ,  r’, - H ) - K ( r ,  z,  t ,  r’, - H ,  0)) h(r’) 

- f 1dr’IOm dt’ G(r ,  z, t ,  r’, - H ,  t ’ )  J(@(r’ ,  - H ,  t’), h(r’)). 

(3.27) 



216 W .  Fennel and M .  Schmidt 

The first term in the first integral is independent of time and equals the nonlinear 
stationary solution $s, compare (3.1 1 ) .  Provided that the time-dependent terms 
tend to zero for large times the quasi-nonlinear approximation gives the correct 
nonlinear stationary limit. 

In  order to be more specific we confine ourselves to a homogeneous background 
flow 

In this case the Green’s function reads explicitly 

(%J(r ,z ,  4 ,  %l(r, 2, t ) )  = (Uo(t) ,  0). 

G ( r , ~ , t , r ’ , ~ ’ , t ‘ )  = B(t - t ’ )K(s?z , s ’ , z ’ )  

(3.28) 

with K(s ,z , s ’ ,  2’) = -(2x)-’CFn(z)F,(~‘)Ko(ls-s’l/Rn). (3.29) 

Note that K depends on time only via the time-dependent radius vector 

n 

s = r - u ( t )  (3.30) 

with u(t) = d7(U0(T),0). s: (3.31) 

The F, are the vertical eigenfunctions of the flat-bottom case, the R, are the 
corresponding Rossby radii, and KO is a modified Bessel function, see Appendix A. 

The linear approximation of the Green’s function, L,  defined by (3.3) follows in the 
limit u ( t ) + O .  This amounts to the formal replacement of Is-s’I by Ir-r’l i n K ,  i.e. 

L(r , z , t ,  r’, z’, t ’ )  = O(t- t ’ )K(r , z , r ’ , z ’ ) .  

On the other hand, the Green’s function S needed in the nonlinear stationary 
approximation follows as S = K for t = t‘.  

Next we discuss the response scenario in the quasi-nonlinear approximation on the 
basis of (3.27) in more detail. As stated above, the first term of the first integral in 
(3.27) is independent of time and gives the stationary part of the response function, 
$”. We anticipate that i t  describes an anticyclonic vortex trapped over the 
topographic feature h where the streamlines are following the contour lines of the 
bottom topography. Since the Green’s function is peaked a t  (s-s’I = 0 it follows that 
the second part describes a cyclonic vortex which has exactly the same structure as 
$&’, apart from the sign, and which is shed downstream along the path r = u(t). Thus, 
the cyclonic vortex leaves the isolated topographic feature provided that the flow 
u, is non-oscillatory. 

The second integral describes the interaction of the induced flow with the 
topography. As mentioned in 53.1, for small times the linear approximation applies 
and the response function $” is a wave-type solution of the quasi-geostrophic 
vorticity equation. Examples of such waves are discussed in $5.  If the second vortex 
moves downstream a smaller part of the associated currents can strike the 
topography so that the topographic waves are damped by vortex shedding. 

To show this qualitatively for an isolated obstacle localized around r = 0 we iterate 
the integral equation (3.27). Let $(O) be the integral 

$(”(r, t )  = -f2 dr’K(r, - H ,  t ,  r’, - H ,  0) h(r’).  s 
We insert the inhomogeneous term, ~ ( O ) ( r ,  0) - $(‘)(r, t ) ,  as the zeroth approximation 
to $ into the second integral. Since the streamlines of $(O)(r,O) follow the contour 
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lines of h, only $(‘)(r,t),  which is centred a t  r = u(t), contributes to the first iterate 
+(l). We can easily convince ourselves that since h is localized, I,P must have the 
structure 

J:dt’Ko(t-t’) $(‘)(t’). 

The asymptotic behaviour of the Bessel function, KO(%) x e-Z/xi, implies that both 
functions under the integral are localized in regions where their arguments are small 
and diminish rapidly for large arguments. Thus, the two functions are non-zero at the 
opposite limits of the integration interval. Consequently the integral vanishes for 
large times and r confined to the vicinity of the obstacle and, therefore, the quasi- 
nonlinear approach equals in fact the steady-state solution for large times. 

In  summary the quasi-nonlinear approach gives a correct description of the limit 
cases both in the linear approach and the nonlinear stationary limit. 

4. Response at infinitely long ridges 

parallel to the y-axis, i.e. 

and a constant and homogeneous background flow U,, i.e. u(t) = Uot.  Inserting (4.1) 
into (3.20) and using (3.29) and (A 22) we obtain from the first integral 

As first example we consider the simple case of infinitely long ridges stretching 

(4.1) h(r) = W), 

$ o ( z , ~ , t )  = f  ‘~Lld5’h(z’)CFn(--)F,(I)~,[exp n (-lz-z’l/Rn) 

where (4.3) 

Since $, is independent of y it follows that J(+ , ,h )  is zero. Solving the integral 
equation by iteration reveals that  the second integral in (3.14) vanishes and hence 
is already the complete solution 

$(., z ,  t )  = @,(z, z ,  t ) .  (4.4) 

The geostrophic currents follow as 

u = U - - -  $t4 - u,, (4.5) 
O f  

and 

The associated density anomaly is 

(4.6) 

(4.7) 

The response consists of a stationary pattern trapped a t  the feature and a mirror 
image of that  pattern moving downstream with the background current U,. If the 
background flow were switched off at t = T ,  then stationary patterns would remain 
above the feature and at x = lJo T as well. 
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Topographic waves are not excited in this case. This follows from the fact that  the 
topographically induced responsc + is parallel to f / H  contours from the very 
beginning of the response scenario as a conscquence of J ( ~ ,  h) = 0. Excitation of 
topographic waves is only possible if the shape of the feature also depends on y. 

Inserting (4.2) into (2.1) and (2 .6a,  b )  reveals that  (4.4)-(4.7) is the solution of the 
full nonlinear vorticity equation (2.10) with the boundary conditions (2.11 a ,  b ) .  This 
is because + is independent of y. 

Owing to the simplicity of the solution it is easy to  investigate how the shape of 
the ridge affects the response pattern. We consider three examples explicitly : a flat- 
topped ridge, a truncated cosine profile and a Gaussian-shaped profile. 

( i )  For a flat-topped ridge 

h(r) = r(O(z+a)-O(z-a)) = y O ( a - 1 ~ 1 )  (4.8) 
we find from (4.3) 

n n ( x )  = h(x) +r sgn (x-a) cxp ( -~ Izinal) - sgn (z + a )  exp ( - - l y 4 ) ] .  (4.9) [ 
With the vertical eigenfunctions and eigenvalues (A l l ) ,  (A 12) and using the sum 

e-nP 

n 
( - l ) n  cos na ~ = - f In (2el(cosh p) + cos a ) )  (4.10) 

n 

we obtain from (4.6) the closed-form expression 

cosh (z+a)/R,)  + cos (nz /HO)  
-In[ 

cash ( ( z -a) /R , )  + COS(~CZ/H~) 
(4.11) 

we can also find a closed-form expression for the density anomaly 

_- -  - *P - 7 '! { 4x2 (1 +;) [ sgn (x-a) (exp (- y) - 1) 

- sgn ( x  + a )  (exp ( -y) - 1) + sgn (x - c', t + a )  

Po HORO 

-sgn(x-Uot-a) 

sin (nz /Ho)  
exp ( Iz-al /R1)  + cos (nz /HO)  
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sin (nz/H,) 
-sgn (x-u--U,t) 

sin (nz/H,) 

sin (nz/H,) 

Choosing the numerical values of the parameters involved as H ,  = 30 m, 7 = 3 m, 
a = 3 km, f = 1.2 x lop4 s-l, N = s-l, and g = 9.81 ms-' we obtain the vertical 
sections of density anomalies as shown in figure 1 (a -d ) .  Thc plots display vertical 
sections for different values of the advection scales Uot.  In  the initial phase, 
upwelling generated at the upstream side of the ridge and downwelling on the other 
side induce density changes a t  the edges of the ridge. Later the density anomalies 
move with U, and leave behind a positive density anomaly doming over the ridge 
while the negative density anomaly has been drifted away in the x-direction. 

(ii) As second example we consider a cosine-shaped ridge 

h(x) = 7 c o s ( ~ z ) 8 ~ a - l r l ) .  (4.13) 

Prom (4.3) it follows 

Thus, similar to the top-hat case, (4.14) has the shape of the topographic feature (first 
term). In  addition there are two exponential terms which smooth out the transition 
a t  the edges of the ridge, x = +_a. 

Inserting (4.14) in (4.2), (4.6), and (4.7) the completc solution can easily be found. 
As an example the resulting density anomaly for large Uot is sketched in figure 1 (e).  

(iii) As our third example we choose, as an infinitely differentiable shape, a 
Gaussian profile 

h(x) = exp ( - (x/a)')). (4.15) 

For nn we obtain in this case 

+ exp [ ("+ r)'] erfc ("+ T)} , (4.16) 
a n  a a n  a 

where erfc (z) is the complementary error function, see Abramowitz & Stegun (1984). 
Inserting (4.15), (4.16) into (4.2), (4.6), and (4.7) gives the description of the response 
to the profile (4.15). In  figure 1 ( f )  the resulting density anomaly is shown for large 
values of U, t .  

A comparison of the pattern shown in figure 1 (a-f) reveals that the structure of 
the response is not very much affected by the explicit shape of the ridges. Generally 
n,(x) has the shape of the ridge profile h(z)  with some modifications controlled by 
the Rossby radius. 

Since for large arguments erfc (x) approaches exp ( -z') it follows from (4.16) that  

n FLY 223 
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FIGURE 1. Plots of the topographically induced density anomaly in response to an upstream 
current flowing over a long ridge. The plots are for increasing values of the advection scale U, t and 
the labels on the contours show values of Ap/po x lo6. (a) 17, t = 1 km : initially up- and downwelling 
at the up- and downstream edges of the ridge generate positive and negative density anomalies. (b) 
U, t = 2 km : later these patterns are moved downstream. (c) U, t = 6 km : if the positive anomaly 
arrives at the downstream edge the negative density anomaly generated earlier will be annihilated. 
(d )  U, t = 10 km : finally a stationary, bell-shaped positive density anomaly remains, doming over 
the ridge, while a corresponding negative density anomaly has been shed. (e) density anomaly over 
a cosine profile in the final steady state. ( f )  as (e), but for a Gaussian-shaped profile. 

8-2 
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17, converges to h ( x )  for large values of the ratio a/R,. In  the’ cases of truncated 
profiles, (4.8) and (4.13), there are rectifying terms, see the exponentials in (4.9) and 
(4.14), which smooth out the response patterns a t  the edges of the ridges. 

Finally we note that according to (4.2) the pressure is dominated by the barotropic 
mode while this mode plays a minor part in the density anomalies. 

Since in nature ridges are always of finite length we have to expect that 
topographic waves, excited a t  the ends of the ridges would emerge. Thus for finite- 
length ridges our solutions apply only as long as the topographic waves have not 
reached the area considered. Moreover, a background flow of finite width would also 
force topographic waves. Such cases are, for example, studied in the papers of 
Willmott (1984) and Killworth (1989). The properties of topographic waves strongly 
affected by the shape of the ridges and the solutions show very complex structures, 
see e.g. figures 10 and 11 in the paper of Killworth (1989). Such problems require 
numerical solutions of the dynamic equations. 

The idealized example considered in the present paper appears to be one of the rare 
cases where analytical solutions of the nonlinear vorticity equation can be obtained. 
In  the case of a top-hat ridge it is even possible to derive closed-form expressions for 
the geostrophic current and the density anomaly. 

5. Response at an axisymmetric obstable - linear case 

obstacles. For simplicity we choose a right-circular cylinder 
I n  this section we analyse the topographically forced response to axisymmetrical 

h(r) = yB(a-r). (5.1) 

We consider a homogeneous time-dependent upstream flow uo(t) suddenly switched 
on at t = 0. In the initial phase, u(t) 6 a ,  we can expect a linear response governed 
by (3.6). Introducing cylindrical polar coordinates (3.6) can be rewritten as 

+a: 

$ L ( r , ~ ,  z,  t )  = - f 1: dr’ r’ [dt’ eim(p-p’)Lm(r, z,  r’, - H o )  
m--m 

i a  

fr ap, 
uo(t’) COST‘--, y $ ( r ’ , ~ ’ ,  - H , t ’ )  

Since (a/&’) h(r’) = -$(a-r’) the /-integration is trivial. 
The time integral is of convolution type. Thus, by Fourier transformation 

and expansion of $L into a Fourier series in T, 

(5.3) 

(5.2) can be converted into an algebraic equation 

i 
$i(r, z,  w )  = w y f L m ( r ,  z, a ,  - H o )  (nauo(w) +6,-,) - im$i (a,  - H o ,  0)). 

(5.5) 

Here the orthogonality of the functions eimp has been used. We denote the Fourier 
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transforms with the same symbol as the original function. Both quantities can be 
distinguished by their arguments. The positive infinitesimal -6 occurring in (5.5) 
prescribes how to avoid the singularities of $.“,(w) when performing the inverse 
Fourier transformation. 

The solution of (5 .5)  is 

where the abbreviation y m  stands for 

Y m  = -qfL,(a, -Ha, a ,  -Ha)- 

$ ( r , q ,  z, t )  = r ( r ,  2) Q(p, t ) ,  

(5.7) 

The sum over m can easily be performed and we obtain after inverse Fourier 
transform 

(5 .8)  

where 

and 

(5.9) 

(5.10) 

This is the solution of the linear vorticity equation (3.6) for a homogeneous time- 
dependent current ua flowing over a right-circular cylinder. We note that a 
‘topographic frequency’ ftop = y 1  has emerged which is defined by (5.7) for m = 1 .  
Inserting the Green’s function according to (A 18) we find 

m 

f top = 71 = f q  (91a(a. a ) ~ :  + z Fn(-Ha)Fn(-Ha + 7) g l n ( a ,  a ) ) .  (5.11a) 
12-1 

It is a consequence of the axisymmetry of the example considered that only a 
topographic frequency with m = 

In (5.11 a )  we have written one of the vertical eigenfunctions Fn with the argument 
- H a  + q in order to avoid a singularity. Here we can argue as follows. In  the Green’s 
function L,(r,z,a,  - H a )  we have put r‘ = a. If r also approaches the edge of the 
cylinder, r + a, then the step functions in gnm imply that the edges are approached 
from a+ = a+€ and a- = a--6 respectively. In  the former case the depth is Ha while 
in the latter case the depth is H a - q .  

Using the vertical eigenfunctions (A 11)  and (A 12) and assuming a + R,  we find 
approximately 

1 occurs. 

(5.11b) 

We note that ftop is independent of ua. The first term in (5.11 b )  is the frequency of 
a double Kelvin wave in a homogeneous fluid proportional to half the inertial 
frequency reduced by the factor q / H a .  The second term is due to the effects of 
stratification through the baroclinic Rossby radius and depends on the horizontal 
scale of the topographic feature. 

In figure 2 (a )  the topographic frequency is depicted versus h / H a  for various ratios 
R J a .  The barotropic part dominates for R,/a < 1,  i.e. for weak stratification or 
obstacles with large horizontal scale. The baroclinic contribution to ftop is most 
significant for small topographic heights, i.e. h/Ha  < 1 ,  and not too small ratios R J a .  
This is also demonstrated in figure 2 ( b )  where the relative shift of the topographic 
frequency due to stratification is shown versus RJa .  
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FIGURE 2 .  (a )  The topographic frequency f,,, as function of the obstacle height h / H ,  for various 
ratios of the first baroclinic Rossby radius to the cylinder radius, RJa. The straight line depicts 
the barotropic case, while baroclinic effects become important especially for strong stratification or 
a small radius of the cylinder. ( b )  The relative shift of the topographic frequency due to 
stratification. Baroclinic effects become important especially for small obstacles. 
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In  order to  study the influence of friction we may introduce simple linear 
dissipation. This can be achieved by the formal replacement of a/a t  by a/at + v in the 
quasi-geostrophic equations. This amounts to a multiplication of the Green’s 
function L by a factor e-”(t-t’) and we obtain instead of (5.10) 

dt’ uo(t - t ‘ )  eCt’ cos (p’ +ftop t ’ ) .  Q(p’, t )  = (5.12) 

The solution (5.9), (5.10) describes a topographically trapped wave moving 
clockwise round the obstacle. This can be seen most explicitly in the case of a pulse- 
like forcing, where the upstream current is switched on and then off after a short time 

s, 
interval At 

uo(t) = u:(O(t)-B(t-At))  x u,*&(t)At.  

Then from (5.12) it follows that 

@ ( r , q , z , t )  = u,*Atf2yacos(p’+tfop)L,(r,z,a, -Ha). (5.13) 

Thus, a pulse excites a free topographically trapped wave cycling clockwise round 
the cylinder with angular frequency - ftop. The wavelength equals one circumference 
of the cylinder. If no damping is included the motion continues with constant wave 
amplitude. However, since the amplitude is proportional to At, which is small by 
definition, the resulting signals are weak. 

For a forcing switched on at t = 0 and being constant thereafter, uo(t)  = u,* O ( t ) ,  we 
find 

(5.14 a)  
U* 

Q(p’, t )  = 2 [sin (q + tfto,) - sin p’]. 
f top  

With friction it follows that 

- ~ ( e - ” ~  cos (p’+ f t o p t )  -cosp’)]. (5.14b) 

If the baroclinic terms are dropped this result equals the barotropic solution given 
by Johnson (1984). 

I n  order to  illustrate the solutions we have sketched the wave patterns by means 
of the density anomalies A p / p o :  

The parameters involved are chosen as Ha = 30 m, y = 3 m, a = 3 km, N = s-’. 
This choice applys to shallow seas as, for example, the Arkona basin in the Baltic Sea. 
The numerical value of the topographical frequency becomes ftop = 9.7 x lo-‘ s-’. 

The density anomalies in response to  a switched on forcing as given by (5.15) are 
shown in figure 3, where four snapshots of Apo/p a t  z = -25 m are plotted. The 
response pattern consists of positive and negative density anomalies which in turn 
correspond to  up- and downwelling, forming a clockwise rotating ‘ butterfly-pattern ’. 
The motion of the pattern can be characterized by the angle, p’(t), of the symmetry 
line Q ( v ( t ) , t )  = 0. From ( 5 . 1 4 ~ )  i t  follows that 

p’ (4  = - iftop t ,  

i.e. the pattern rotates with the constant rate -iftop. After rotation by almost 180”, 
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FIGURE 3. Four snapshots of density anomalies as produced by a topographically trapped wave in 
response to an upstream flow suddenly switched on at t = 0 and being constant thereafter. A 
butterfly-shaped pattern is generated which moves clockwise round the obstacle. Anomalies a t  a 
depth of 25 m are shown, the numerical values of the involved parameters are given in the text. 
(a )  t = lo5 s ,  (6) t = 3 x lo5 s, (c) t = 5 x lo5 s ,  (d )  t = 7 x lo5 s .  The labels on the contours are 
Applp,, x lo6. 

the up- and downwelling ‘wings ’ approach the down- and upwelling centres up- and 
downstream of the obstacle and the pattern vanishes temporarily, and then the 
whole scenario starts again. If f t o p t  equals integer multiples of 27c the pattern 
vanishes identically and hence the symmetry line is not well defined. These are the 
moments where the angle ~ ( t )  jumps from 

If friction is taken into account the motion changes drastically. The angle of the 
symmetry line, Q = 0, follows from (4.14b) as 

to -an as sketched in figure 4. 

a( 1 - e-ar cos 7) + ePorr sin 7 
1 - ePar cos 7 -a e-orr sin 7 

pl = arctan ( 5 . 1 5 ~ )  

with a = v/ftop and 7 = f t o p t .  For large times a steady state establishes where the 
corresponding angle, qm, is given by 

qa = arctan a. 
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FIGURE 4. Angle of the symmetry line of the double vortex versus time for different damping rates, 
a = v/ftop. T,,, is the period given by 2n/ft,,. In  the inviscid case, a = 0, the pattern rotates from 
90" to -go", vanishes momentarily and starts again. Note that for t = nTOp (n = 1 , 2 , 3 , .  . .) the 
symmetry line is not defined because the pattern vanishes identically. Thus the angle seemingly 
jumps from -90" to 90". For non-zero a the angle describes a pattern that oscillates while 
approaching a stationary state. 

Thus the final orientation of the pattern is determined by the ratio of damping rate 
to  topographic frequency. The time behaviour of v(t) is depicted in figure 4 for 
different damping rates a. The angular velocity, i.e. the phase speed of the 
topographic wave, follows from ( 5 . 1 5 ~ )  as 

e-a7 - cos 7 + 01 sin 7 - $ = -iftop cash (017) - cos 7 ' 
(5.15b) 

Initially the patterns rotate with angular frequencies close to  -gtop. Later the 
motion decelerates and the patterns oscillate around the final position while 
approaching the steady state. 

Since the validity of the linear approximation is restricted to times smaller than 
the advection time T,, the inviscid solution applies only to the starting phase, t < T,. 
I n  the viscous case (5.14b) is a consistent solution for strong damping rates, i.e. 
vT, 9 1. 

Next we consider the response to an oscillatory background flow, 

uo(t) = ut  6( t )  sin wo t .  

From (5.10) we obtain 

ut wo (cos (v + tftop) -COST cos wo t + f *sinp, sin wo t 
Q(v9 t )  = 2 

wo -f,",p WO 

I n  particular in the case of resonance, wo = ftop, this expression degenerates to 

Q@, t )  = - 4 WtOp sin (v + tf,,,) - sin v sin tftop). (5.17) 
2ftop 
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FIGURE 5. As figure 3, but  for an oscillatory upstream flow alternating with a frequency 
wo = zftoD. ( a )  t = wS,  ( b )  t = 3 x 1 0 5  s, (c) t = 5 x 1 0 5  2 ,  ( d )  t = 7 x 105 s. 

The response patterns are displayed in terms of density anomalies in figure 5 for 
wo = 2ftOp and in figure 6 for wo = ftop. The parameters have been chosen as in figure 3. 

The rotation rate of the symmetry line of the pattern, Q = 0, follows as 

!!? at = -hop/( 4p2 - 2P( 1 +p) cos (1 -p) T + 2/3( 1 -p) cos (1 + p) 7 + 2( 1 - P 2 )  sin2 /IT) ' 
(5.18) 

where /3 is the ratio of the forcing frequency wo to the topographical frequency, i.e. 
/3 = wo/ftop, and T = ftopt. In figure 7 the angular velocity is shown for some rational 
values of p. Obviously the rate of rotation changes rapidly in time and thus the 
inviscid response to an oscillatory forcing appears to be rather complex. For 
irrational values of p the motion can be even more irregular. The small vertical bars 
in figure 7 indicate the moments where v(t) is not well defined because Q vanishes 
identically. 

) 
4p-t (1 -p)"os (1 +p) 7- (1 + P ) 2 C O S  (1 -p)  7 
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FIQURE 6. As figure 3, but for an oscillatory upstream flow alternating with the topographic 
frequency wo = f,,,. In  the resonance case the pattern rotates round the obstacle with an amplitude 
increasing linearly with time. (a) t = lo5 s ,  ( b )  t = 3 x lo’ s ,  (c) t = 5 x lo5 s ,  ( d )  t = 7 x lo‘s. 

In the case of resonance, p = 1, we find in particular 

r2 - sin2 r 
r - sin2r + 27 cos r sin r ’ ?? = -Lop 2 at 

(5.19) 

i.e. with increasing time the rotation rate tends to -ftop. 

In order to check the range of validity of these results we need an advection 
timescale which is not well defined in the case of oscillatory forcing. However, we can 
define an advection scale, La, which measures the distance a fluid element can be 
advected by the background flow before uo changes its direction, 

La = uz s,”” dt sin wo t = - uo* To , 
K 

with wo = 2n/T0. Then the linear approximation applies for 2A %La. Thus, for our 
choice of parameters (u,* = 5 cm s-l, A = 3000 m) the linear approximation is not 
well justified for an oscillatory flow with wo < ftop. Since, however, the range of 
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FIQURE 7. Angular velocity of the pattern in response to an oscillatory forcing relative to the 
topographical frequency : wo = f,,, (solid line), wo = 1.5ft,, (dashed line), wo = 2f,,, (dot-dashed 
line). 

validity can be extended by reducing uz, figures 5 and 6 give a correct visualization 
of the response pattern. Only the amplitude of the signals would be smaller for a 
reduced background velocity. In summary topographic waves forced by an 
oscillatory background flow with not too large an amplitude and not too small a 
frequency can be described in the framework of a linear theory. 

6. Response at an axisymmetric obstacle - quasi-nonlinear case 
Let us again consider a constant, homogeneous upstream current switched on at  

t = 0 and flowing over a cylindric obstacle as given by (5.1). After times exceeding 
the advection time, T, = 2a/U,,  the advection of the topographically forced pattern 
by. the upstream flow U, has to be taken into account. This can be accomplished by 
the quasi-nonlinear approximation where the response is described by (3 .27) .  For a 
right-circular cylinder (5.1), we may rewrite (3.27) in plane polar coordinates as 

$(r,cp,z, t )  = --f21SUlldcp’~dir’1~(1.Z,I.. -H, ) -K(s , z , r ’ ,  - H O ) ]  

+ - f I ~ ~ d c p ’ ~ ~ d r ’ S ( a - r ‘ ) ~ d t ’ K ( s , z , s ’ ,  - H , ) F ~ ( a , T ’ ,  a - H , t ’ )  (6.1) 

w 
where the vector s is defined as 

s = s ( t )  = ( (X-“ ( t ) )2+y2)a ,  

s, = 2- - t l ( t )  = s ( t )  cos @(t) ,  with components 

sy = y = s ( t )  sin @(t).  
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With the aid of the Fourier series (A 18) the integrals in the first term of (6.1) can be 
evaluated explicitly : 

where the standard integrals j dz zKo(x)  = -xKl(z), and j dz zIo(z) = xll(x) have 
been used. The second KO-function in the first integral in (6.1) gives the same 
expression as (6.2), except that r has to be replaced by s. 

Thus, with the notation 

we can rewrite (6.1) as 

a 
i% 

$(r ,  p7, z, t )  = Y(T, z )  - Y(s, z )  +jv dt’ dp7’ $(a,p7’, - H ,  t ’ )  ,K(s, z, s’, - H o )  

(6.4) 
1 . r  

As outlined in $3, the first term on the right-hand side of (6.4) is the steady solution 
which describes an anticyclonic vortex around the obstacle as already discussed by 
Hogg (1973) and Huppert (1975). The second term, which depends on t and p7 through 
s, describes a cyclonic vortex shed downstream along the x-axis, moving with the 
background velocity uo. The third term mirrors the interaction of the topographically 
induced current with the topographic feature. According to the previous section this 
mechanism is responsible for the generation of topographic waves. 

We have solved the integro-differential equation (6.4) numerically. The numerical 
scheme is described in Appendix B. The results are depicted in figures 8 and 9, where 
the development of the solution is shown for two examples of non-oscillatory 
upstream flows. The numerical values of the parameters involved are the same as in 
the preceeding section. For a small upstream velocity, uo = 1 cm/s, the response is 
shown in figure 8. The pattern closely resembles that of a topographic wave shown 
in figure 3. If the upstream flow is enhanced by one order of magnitude, uo = 
10 cm/s, then the processes of vortex shedding dominate the response, as is visible 
in figure 9. Owing to the topographic waves in the initial phase the path of the shed 
cyclonic vortex has been shifted towards the negative y-axis. Further enhancement 
of the upstream flow decreases the role played by the topographic waves and the 
cyclonic vortex will move downstream with its centre along the z-axis. In  those cases 
the interaction term in (6.4) contributes very little and the response is practically 
described by the first two terms of (6.4). 

We note that Johnson (1984) has given a formula for the ‘fast case’, see (2.9) in 
this paper, which corresponds to (6.4). However, the integral term has been dropped 
and only the barotropic case with a rigid-lid condition for Green’s function a t  the sea 
surface was considered. This is equivalent to using only the barotropic mode, n = 0, 
in (6.3) and taking the limit case R, -+ co. From the behaviour of the Bessel function 
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FIQURE 8. Plots of the topographically induced response of an upstream flow, switched on a t  t = 
0 and being constant thereafter, in the framework of a quasi-nonlinear approximation scheme. The 
labels on the contours show values of IC. x lo5 (m' ss2). The changes in the pressure field are shown 
a t  25 m depth for a small upstream velocity, uo = 1 cm/s. In this case the advection time is large 
and, consequently, the response pattern resembles that of the linear topographic wave displayed 
in figure 3. (a) t = 5 x lo4 s ,  ( b )  t = lo5 s, ( c )  t = 1.5 x lo5 s ,  ( d )  t = 2.5 x lo5 s. 

KO and lo for small arguments we find that the solution diverges logarithmically for 
an infinite barotropic Rossby radius. Thus, a proper choice of the sea-surface 
boundary condition, e.g. (3.19a), is of importance. 

It is worth comparing our results with the numerical solutions of the full nonlinear 
Boussinesq equations as given in H & B. We start with the slow case (S), where the 
advection time is about 46 days and a linear response scenario can be expected. 
Actually, figure 8 of H & B reveals that  a butterfly structure rotates clockwise round 
the obstacle. The maximum density anomaly is trapped near the steepest slope of the 
bottom profile and has a range of the order of the baroclinic Rossby radius, which is 
about 13 km for the parameters used in H & B. Within this butterfly structure shown 
in figure 8 in H & B the area of maximum density perturbation seems to rotate faster 
than the outer areas. We observe such behaviour neither in the linear approximation 
displayed in figure 3 nor in the quasi-nonlinear approximation for small background 
velocities as in figure 8. However, the analysis of a smoother obstacle given by a 
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FIGURE 9. As figure 8, but for a larger upstream velocity, uo = 10 cm/s. In this case the butterfly 
pattern is rotated by a small angle only, before the vortex shedding starts. The development of a 
bell-shaped cyclonic vortex over the obstacle while an anticyclonic vortex is shed downstream can 
be clearly seen. (u )  t = 5 x lo4 s, ( b )  t = lo5 s, ( c )  t = 1.5 x lo6 s. 

parabolid presented by Johnson (1984) suggests that a regularly rotating butterfly 
pattern is a special property produced by cylindrical obstacles with sharp edges 
whereas for smooth obstacles the angular velocity varies with the distance from the 
centre. The possible effects of self-advection of the induced currents needs further 
investigation. 

We interpret the pattern shown in figure 8 ( d )  in H & B as the linear final state 
which has become stationary due to friction. This is supported by the similarity to 
figurc 3. 

In the fast case (F), see figure 5 in H & B, the evolution of the response pattern 
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is quite similar tfo the quasi-nonlinear approximation shown in figure 9. One can 
clearly identify the linear initial phase dominated by a rotating butterfly structure 
and the advective phase where the upwelling area is shifted to the top of the obstacle, 
whereas the downwelling area leaves the topographic feature. The long tail of the 
warm area found by H & B is probably the result of a nonlinear vortex-vortex 
interaction which is disregarded in the quasi-nonlinear approach. 

These findings show that the essential dynamics of the response pattern forced by 
isolated topographic features can be reasonably described by a quasi-nonlinear 
theory. 

7. Discussion 
An analytical investigation of the response of a stratified f-plane ocean to small 

topographic features is presented. A time-dependent upstream current flowing over 
ridges and cylindrical obstacles has been studied in a quasi-nonlinear approach in the 
framework of the quasi-geostrophic theory, which gives a sufficient description of the 
response scenario. Apart from a few exceptions we confine the analysis to an inviscid 
ocean. 

I n  order to solve the vorticity equation we have derived an integral equation 
based on a Green’s function method which covers the whole response scenario. In 
particular, the linear response in the starting phase and the nonlinear final state 
appear as limit cases. The boundary conditions are accounted for automatically. 
Thus, once the Green’s function is known the solution to various examples of 
upstream flows and topographical features can be calculated in a straightforward 
manner. 

By means of the analytical treatment an explicit indication of terms responsible 
for generation of topographic waves, vortcx shedding, and final steady states is 
possible and thus a further elucidation of those processes is achieved. 

In  the case of infinitely long ridges the response scenarios are completely governed 
by vortex formation over the feature and vortex shedding. Such a choice of geometry 
filters out topographical waves. It is found that the solutions of the quasi-nonlinear 
theory obey even the full nonlinear quasi-geostrophic vorticity equation. The gross 
behaviour of the response has been illustrated in terms of density anomalies. The 
shape of the isolines mirrors basically the form of the bottom profile. For truncated 
profiles there are exponential terms with e-folding distances given by the Rossby 
radii, which smooth out the pattern over abrupt changes of the topography. 

The case of cylindrical obstacles is, in particular in the starting phase, significantly 
affected by topographic waves. These waves have a ‘butterfly structure’ formed by 
positive and negative density anomalies and rotate clockwise round the feature. A 
topographic frequency emerges which is determined by the inertial frequency, 
stratification and geometry of the feature. 

For a background flow switched on suddenly and being constant thereafter the 
response is initially well described by the linear theory. For times of the order of the 
advection time, however, the linear theory no longer applies. Nevertheless there are 
some cases which are described by linear dynamics. For example, if friction is taken 
into account and provided the inverse damping rate is smaller than the advection 
time, then a damped topographic wave follows which approaches a stationary state 
before vortex shedding can develop. Moreover, for a forcing of not too long a 
duration or a periodic forcing with not too small a frequency the linear wave-type 
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solutions apply. As the examples discussed reveal, the time behaviour of those forced 
topographic waves can be rather complex. 

Otherwise the process of vortex shedding comes into play, which disperses the 
topographic waves and leads to  a stationary vortex pattern over the feature while a 
second vortex with opposite sign drifts downstream with the background flow. Thus 
topographic waves are only supported as long as the geostrophic currents associated 
with the disturbances have non-zero components normal to the feature. This is the 
case as long as the downstream-drifting vortex has not left the area of the feature. 

Baroclinic and barotropic contributions to the response pattern exhibit the same 
shaped contour lines but the scales differ considerably owing to the different values 
of the Rossby radii R, and R,. Stratification tends to enhance the topographic 
frequency ftop. Thus, the butterfly structure rotates faster and the vortex which will 
be shed downstream is displaced further perpendicular to the background flow as in 
the absence of stratification. 

The theory is limited in several important ways. The topographic height, h, is 
assumed to  be small compared to the depth, and changes in depth are taken into 
account in derivatives of h only. Thus transport over the features is only correct up 
to  orders of h / H .  Moreover, in the numerical scheme used to  describe the vortex 
shedding an approximated Green's function has been taken into account, see 
Appendix B. 

Nevertheless, the analytical quasi-nonlinear model can reproduce the dominant 
features found in numerical simulations, e.g. in H & B, remarkably well, and this 
agreement suggests that  the model contains much of the essential dynamics of the 
phenomenon. 

The analysis was focused on obstacles but the case of trenches or canyons can 
easily be included by changing the sign of the function h(x, y) which describes the 
topographic feature. 

There are many papers suggesting relatively strong influences of small topographic 
features on the dynamics of an ocean even far from the bottom. For example, Owens 
& Hogg (1980) found evidence of stratified Taylor columns at 36" N, 55' W in 
agreement with the models of Hogg (1973) and Huppert (1975). Freeland & Denman 
( 1982) reported a well-documented example of a topographically controlled upwelling 
centre off southern Vancouver Island, which occurs every spring in response to the 
development of a coastal current. As a result of the NOAMP experiments Mittelstaedt 
(1986) reported a strong influence of the bottom topography on the dynamics of the 
West European Basin. They found topographically trapped currents which, in 
accordance with theory, form anticyclonic eddies over hills and cyclonic eddies over 
valleys. 

Series of satellite images collected by Horstmann (1983) reveal that  the Arkona 
Basin in the Baltic Sea is populated by eddies. There are some topographic features 
favourable for vortex generation in that area and the numerical examples given in 
the present paper correspond to certain features of the basin. However, there arc 
various irregularities in the coastline geometry which may also act as eddy 
generators. 

In summary, it seems that the observational findings give indications rather than 
evidence for the theoretically predicted response patterns and scenarios. Thus we 
suggest further process-oriented field work, e.g. in the Arkona Basin, in order to 
study the effects of small topographic features. 
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Appendix A. Evaluation of the Green’s function 

Green’s function involved, which according to  $3.3 is subject to 
In order to solve the integro-differential equation (3.20) we have to calculate the 

( V ” + ~ ’ ) ) , G ( r , z , t , r ’ , z ’ , t ’ )  = d(r-r ’ )d(z -z ’ )d( t - t ’ )  ( A  1) 

with the boundary conditions 

G + O  for r ’+ co, 
G = 0 for t < t’, 

($+$)%.c=o for z ‘ = o  

(A 3 b )  
a -  

a i  -GBta,.G = 0 for z’ = - H .  

We attack the problem with the ansatz 

G(t ,  t’)  = O(t- t ’ )K(t ,  t ’ ) .  (A 4) 

As was shown in $3 .3  the function K( t ,  t ‘ )  is governed by the equation 

) X ( t , t ’ )  = 0 

K ( t ,  t ’ )  I t a t ?  = x. and fulfills the condition 

The function x is independent of time and obeys the boundary-value problem 

( V 2 ’ + Z Y ’ ) X ( r , z , r ’ , z ’ )  = d(r-r’)d(z-z’), (A 7 )  

We assume a small height of the isolated topographic feature, i.e. h / H  < 1 and 
approximate the boundary condition (A 8 b )  by the flat-bottom condition 

(A 9) 
a 

- X  = 0 for z’=-H,. 
82‘ 

Then vertical and horizontal coordinates can be separated 

where the F,, are the vertical eigenfunctions of the flat-bottom case, which are subject 
to the vertical eigenvalue problem 

with F i ( 0 )  = - ( N 2 / g )  Fn(0) and Fk( - H o )  = 0. 
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For simplicity we confine ourselves to a constant Brunt-Vaisala frequency, where 
the eigenfunctions and eigenvalues follow as 

and 

1 

nx 

The eigenfunction F,(z) and the eigenvalues A,, as given by (A 1 1 )  and (A 12) are 
obtained by Taylor expansion of the full expressions with respect to the small 
parameter N 2 H o / g ,  or, equivalently R:/Ri,  see e.g. Fennel & Lass (1989). Here 
R ,  = ( f A n ) - ,  is the Rossby radius associated with the nth mode. In  particular R, is 
the barotropic or external Rossby radius and R ,  is the baroclinic or internal Rossby 
radius. According to (A 12) we have R ,  = R, /n .  

Inserting (A 10) into (A 7 )  yields for A ,  the equation 

The solution to (A 13) is the modified Bessel function K O :  

(A 14) 
1 

2 K  
A,(r ,  r’) = ---Ko(lr-r’1/Rn). 

Now we return to our original problem, the solution of the differential equation (A 5 ) .  
It can easily be seen that for a homogeneous upstream flow uo = (U,(t),O) any 
function of the form 

X(r, t ,r’ , t ’ )  = X ( r - u ( t ) ,  r’-u(t’))  

with u ( t )  = d7 u0(7) 
0 

solves (A 5 ) .  This implies that in the quasi-nonlinear case the Green’s function for a 
homogeneous upstream flow is 

G(r , z , t ,  r’,~’, t’) = B(t-t’)K(s,z,s’ ,  2’) 

with 

where s denotes the vector s = r - u ( t ) .  

The Green’s function L needed in the linear approximation follows for u -+ 0 as 

~ ( r ,  z, t ,  ri, 21, t’) = e ( t - t / ) K ( r ,  z, J ,  z / ) ,  (A 16) 

i.e. in the linear initial phaseK becomes independent of time. According to (3.26) the 
Green’s function S which is needed in the nonlinear stationary case is 

S(r ,z ,  r’, 2’) = K ( r , z , r / ,  2’) .  (A 17) 

For later reference we note the following useful standard relations of modified Bessel 
functions : 

m 

g m n ( 8 ,  s’), (A 18) 
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where gmn is defined by 
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Here I ,  and K ,  are the modified Bessel functions of mth order, see e.g. Abramowitz 
& Stegun (1984). From the properties of K ,  and I ,  i t  follows that 

Smn = g-mn. 

From (A 18) follows the Fourier-series of L :  

with 

Moreover we note 

Appendix B. Numerical solution of the quasi-nonlinear equation 
I n  order to solve (6.4) numerically we first introduce a discrete time grid 

where the subscripts n and i indicate the times t = nAt and t’ = iAt with At being the 
time step. Note that the first term on the right-hand side is independent of time. 
When iterating (B 1) we see that in the nth step the first three terms on the right- 
hand side are known from the foregoing, (n- l ) th ,  step and the problem amounts to 
the solution of a Fredholm-type integral equation with respect to 9, which has to  be 
solved for each time step. 

We simplify the problem further by taking into account only the barotropic part 
of the Green’s function under the integral. Since in our case the barotropic Rossby 
radius is much larger than the radius of the obstacle, R, % a, the derivation of the 
Green’s function reduces to 

1 2asni sin (@ni-q’) 
Kp,, ni = -- 

4xH, s i i  +a2 + 2sni a cos ( Qni -v’) ’ 
where sin and ain are defined by 

x-(n-i)At U, 
sii = (x-(n-i)AtU,)2+y2, cosGni = 

S n i  

We proceed in two steps. First, we solve (B 1 )  at  r = a and z = - H , ,  and then we 
insert the result again into (B 1) in order to evaluate the pressure field for arbitrary 
r and z .  

It appears, that  for r = a the rightmost term on the right-hand side of (B 1) is a 



Responses to topographical forcing 239 

Hilbert transform of the function kn, where the Hilbert transform ofa  function u(a) 
is defined as 

dip sin (a-ip) 

2n l-cos(a-qJ) H[u] (a) = Jr - 4 i p )  

and has the useful property 

This can be used to solve the Fredholm integral equation analytically. To this end 
we rewrite (B 1) as 

with 

I Alfh n51 1 @ 2asni sin ( CDni - a) 
ki(a,a, -w. (B 5 )  

2H0 i-l 2n sii  +a2 - 2sni a cos (CDni  -a) 

Applying the Hilbert transformation twice we arrive a t  

This equation was solved numerically. The time step was chosen to be much less than 
the advection timescale. The computations were carried out on a PC. 
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